Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
J Bone Miner Metab ; 42(2): 155-165, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310177

RESUMO

INTRODUCTION: Fanconi renotubular syndromes (FRTS) are a rare group of inherited phosphaturic disorders with limited Indian as well as global data on this condition. Here, we describe the experience of a single Endocrinology center from Western India on FRTS. MATERIALS AND METHODS: Comprehensive clinical, biochemical, radiological, management, and genetic details of FRTS patients managed between 2010 and 2023 were collected and analyzed. RESULTS: FRTS probands had mutations (eight novel) in six genes [CLCN5 (n = 4), SLC2A2 (n = 2), GATM, EHHADH, HNF4A, and OCRL (1 each)]. Among 15 FRTS patients (11 families), rickets/osteomalacia was the most common (n = 14) presentation with wide inter- and intra-familial phenotypic variability. Delayed diagnosis (median: 8.8 years), initial misdiagnosis (8/11 probands), and syndrome-specific discriminatory features (8/11 probands) were commonly seen. Hypophosphatemia, elevated alkaline phosphatase, normal parathyroid hormone (median: 36 pg/ml), high-normal/elevated 1,25(OH)2D (median: 152 pg/ml), hypercalciuria (median spot urinary calcium to creatinine ratio: 0.32), and variable proximal tubular dysfunction(s) were observed. Elevated C-terminal fibroblast growth factor 23 in two probands was misleading, till the genetic diagnosis was reached. Novel observations in our FRTS cohort were preserved renal function (till sixth decade) and enthesopathy in FRTS1 and FRTS3 families, respectively. CONCLUSION: Our findings underscore frequent under- and misdiagnosis of FRTS; hence, a high index of suspicion for FRTS in phosphopenic rickets/osteomalacia, with early consideration of genetic testing is essential to ensure timely diagnosis of FRTS. The novel variants and phenotypic manifestations described here expand the disease spectrum of FRTS.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Síndrome de Fanconi , Hipofosfatemia Familiar , Osteomalacia , Raquitismo Hipofosfatêmico , Humanos , Osteomalacia/genética , Raquitismo Hipofosfatêmico Familiar/genética , Hipofosfatemia Familiar/genética , Hipofosfatemia Familiar/metabolismo , Síndrome de Fanconi/genética , Síndrome de Fanconi/metabolismo
3.
Med. clín (Ed. impr.) ; 161(11): 493-497, dic. 2023.
Artigo em Espanhol | IBECS | ID: ibc-228154

RESUMO

Antecedentes y objetivo El solapamiento clínico y bioquímico de diversas enfermedades del metabolismo fosfocálcico puede conllevar un erróneo diagnóstico y su consecuente abordaje clínico. Un ejemplo es el seudohipoparatiroidismo, que puede confundirse con el raquitismo dependiente de vitamina D (VDDR1) si no se hacen las determinaciones bioquímicas adecuadas. Pacientes y métodos Dos parejas de hermanos, de familias independientes, fueron diagnosticados clínicamente en la adolescencia de seudohipoparatiroidismo al presentar hipocalcemia, niveles elevados de hormona paratiroidea y valores normales o elevados de fósforo. Tras descartar alteraciones en GNAS, se realizó un estudio, mediante secuenciación masiva, de genes asociados a otros diagnósticos diferenciales. Resultados Se identificaron 2variantes genéticas en el gen CYP27B1 potencialmente asociadas con el fenotipo. Variantes patogénicas en este gen se asocian con VDDR1A. La reevaluación clínica-bioquímica de los pacientes confirmó dicho diagnóstico y se adecuó el tratamiento. Conclusiones Si bien la VDDR1A es un trastorno del metabolismo de diagnóstico infrecuente en la edad adulta, en casos de hipocalcemia con valores elevados de PTH es relevante la determinación de las formas 1,25(OH)2D3 y 25(OH)D3 de la vitamina D para alcanzar un diagnóstico correcto (AU)


Background and objective The clinical and biochemical overlap of various pathologies of phosphocalcic metabolism can lead to misdiagnosis and consequent clinical management. One example is pseudohypoparathyroidism, which can be confused with vitamin D-dependent rickets (VDDR1) if appropriate biochemical determinations are not performed. Patients and methods Two pairs of siblings, from independent families, were clinically diagnosed in adolescence with pseudohypoparathyroidism due to hypocalcaemia, elevated parathyroid hormone levels and normal or elevated phosphorus values. After ruling out alterations in GNAS, a massive sequencing study of genes associated with other differential diagnoses was carried out. Results Two genetic variants in the CYP27B1 gene potentially associated with the phenotype were identified. Pathogenic variants in this gene are associated with VDDR1A. Clinical-biochemical re-evaluation of the patients confirmed this diagnosis and treatment was adapted. Conclusions Although VDDR1A is an infrequently diagnosed pathology in adulthood, in cases of hypocalcaemia with elevated PTH values, determination of the 1,25(OH)2D3 and 25(OH)D3 forms of vitamin D is relevant to reach a correct diagnosis (AU)


Assuntos
Humanos , Feminino , Pessoa de Meia-Idade , Deficiência de Vitamina D/diagnóstico , Deficiência de Vitamina D/genética , Pseudo-Hipoparatireoidismo/diagnóstico , Pseudo-Hipoparatireoidismo/genética , Raquitismo Hipofosfatêmico/diagnóstico , Raquitismo Hipofosfatêmico/genética
4.
J Med Case Rep ; 17(1): 436, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37858137

RESUMO

BACKGROUND: Metabolic bone disease causes significant morbidity and mortality, especially when misdiagnosed. With genetic testing, multiple disease pathologies can be analyzed. CASE PRESENTATION: A 5-year and 9-month-old otherwise healthy Yemeni girl presented to her Yemen physician for evaluation of inward bending of her right knee and short stature. After extensive medical testing, she was given a diagnosis of hypophosphatemic rickets and growth hormone deficiency and started on treatment. Despite appropriate treatment, however, her condition continued to progress, prompting her family to pursue additional workup including genetic testing outside of Yemen. Genetic testing ultimately revealed a variation of unknown significance associated with amelogenesis imperfecta. CONCLUSIONS: Hypophosphatemic rickets secondary to renal tubular acidosis was the working diagnosis. However, the patient's condition did not improve. Further genetic testing revealed a variation of unknown significance associated with amelogenesis imperfecta. We aim to present this case, provide an overview of the causes, and diagnostic metabolic bone health evaluation.


Assuntos
Acidose Tubular Renal , Amelogênese Imperfeita , Raquitismo Hipofosfatêmico , Feminino , Humanos , Lactente , Amelogênese Imperfeita/diagnóstico , Amelogênese Imperfeita/terapia , Erros de Diagnóstico
6.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(7): 705-710, 2023 Jul 15.
Artigo em Chinês | MEDLINE | ID: mdl-37529952

RESUMO

OBJECTIVES: To study the value of serum fibroblast growth factor 23 (FGF23) in the diagnosis of hypophosphatemic rickets in children. METHODS: A total of 28 children who were diagnosed with hypophosphatemic rickets in Children's Hospital of Nanjing Medical University from January 2016 to June 2021 were included as the rickets group. Forty healthy children, matched for sex and age, who attended the Department of Child Healthcare of the hospital were included as the healthy control group. The serum level of FGF23 was compared between the two groups, and the correlations of the serum FGF23 level with clinical characteristics and laboratory test results were analyzed. The value of serum FGF23 in the diagnosis of hypophosphatemic rickets was assessed. RESULTS: The rickets group had a significantly higher serum level of FGF23 than the healthy control group (P<0.05). In the rickets group, the serum FGF23 level was positively correlated with the serum alkaline phosphatase level (rs=0.38, P<0.05) and was negatively correlated with maximum renal tubular phosphorus uptake/glomerular filtration rate (rs=-0.64, P<0.05), while it was not correlated with age, height Z-score, sex, and parathyroid hormone (P>0.05). Serum FGF23 had a sensitivity of 0.821, a specificity of 0.925, an optimal cut-off value of 55.77 pg/mL, and an area under the curve of 0.874 in the diagnosis of hypophosphatemic rickets (P<0.05). CONCLUSIONS: Serum FGF23 is of valuable in the diagnosis of hypophosphatemic rickets in children, which providing a theoretical basis for early diagnosis of this disease in clinical practice.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Raquitismo Hipofosfatêmico , Criança , Humanos , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico/diagnóstico
7.
Clin Med (Lond) ; 23(4): 420-422, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37524410

RESUMO

Abnormalities associated with phosphate metabolism can lead to thoracic deformities that result in respiratory failure, which is conventionally managed by means of supplemental oxygenation, positive airway pressure and physiotherapy. However, when these measures fail, the clinician faces a dilemma, since many patients cannot tolerate a major surgical procedure. A minimally invasive technique, insertion of an endobronchial stent, might offer a solution.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Insuficiência Respiratória , Raquitismo Hipofosfatêmico , Humanos , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico/complicações , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia , Stents/efeitos adversos
10.
Artigo em Inglês | MEDLINE | ID: mdl-36847234

RESUMO

BACKGROUND: X-linked hypophosphatemia is the most prevalent form of heritable rickets, characterized by an X-linked dominant inheritance pattern. The genetic basis of X-linked hypophosphatemia is a loss-of-function mutation in the PHEX gene (Phosphate regulating gene with Homology to Endopeptidases on the X chromosome), which leads to an enhanced production of phosphaturic hormone FGF23. X-linked hypophosphatemia causes rickets in children and osteomalacia in adults. Clinical manifestations are numerous and variable, including slowdown in growth, swing-through gait and progressive tibial bowing, related to skeletal and extraskeletal actions of FGF23. PHEX gene spans over 220 kb and consists of 22 exons. To date, hereditary and sporadic mutations are known (missense, nonsense, deletions and splice site mutations). CASE PRESENTATION: Herein, we describe a male patient carrying a novel de novo mosaic nonsense mutation c.2176G>T (p.Glu726Ter) located in exon 22 of PHEX gene. CONCLUSION: We highlight this new mutation among possible causative of X-linked hypophosphatemia and suggest that mosaicism of PHEX mutations is not so uncommon and should be excluded in diagnostic workflow of heritable rickets both in male and female patients.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Raquitismo Hipofosfatêmico , Criança , Adulto , Humanos , Masculino , Feminino , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/genética , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Raquitismo Hipofosfatêmico/diagnóstico , Raquitismo Hipofosfatêmico/genética , Mutação , Éxons/genética
11.
J Pediatr Endocrinol Metab ; 36(2): 152-157, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36524979

RESUMO

OBJECTIVES: Vitamin D dependent rickets type 1A (VDDR1A) is a rare autosomal recessive condition due to inactivating mutation of CYP27B1. It mimics clinically, biochemically and rediologically to nutritional and hypophosphatemic rickets. In developing countries like Pakistan, VDDR1A is often misdiagnosed as nutritional rickets or hypophosphatemic rickets due lack of free access to 1,25 (OH) 2 D level and genetic testing. This study was aimed to determine the clinical spectrum and diagnostic challenges of VDDR1A due to CYP27B1 mutation in developing countries. METHODS: Retrospective review of all cases of VDDR1A due to CYP27B1 mutation over a period of two years presenting in the Pediatric Endocrine clinic of Hameed Latif Hospital, Lahore, Pakistan. RESULTS: Six cases of VDDR1A (4 males) were identified. Mean age of clinical manifestation was 14 (9-24) months. Mean age of presentation to endocrine department was 5.5 (1.5-11.8) years. Growth failure and bony deformities were the most common presentation (n=6), followed by repeated diarrheas and abdominal distension (n=3) and recurrent fractures (n=1). All cases shared same biochemical profile of low/normal calcium, hypophosphatemia, raised alkaline phosphatase, raised PTH, normal/high 25(OH)D and tubular reabsorption of phosphate (TRP) <85%. Patients treated with calcitriol showed rapid healing as compared to those treated with 1-alfacalcidol. CONCLUSIONS: We should have a high index of suspicion of VDDR1A in rickets not responding to cholecalciferol therapy.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Raquitismo Hipofosfatêmico , Raquitismo , Criança , Pré-Escolar , Humanos , Lactente , Masculino , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Calcitriol/uso terapêutico , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/genética , Mutação , Raquitismo/diagnóstico , Raquitismo/tratamento farmacológico , Raquitismo/genética , Raquitismo Hipofosfatêmico/tratamento farmacológico , Vitamina D/uso terapêutico , Feminino
12.
J Pediatr Endocrinol Metab ; 36(1): 91-95, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36351286

RESUMO

OBJECTIVES: Lower limb deformities in children need careful orthopedic evaluation to distinguish physiological forms from pathological ones. X-linked hypophosphatemia (XLH) is a rare hereditary condition caused by PHEX gene mutations where tibial varum can be the first sign. CASE PRESENTATION: We report a family presenting with severe tibial varum, harbouring a rare PHEX intron mutation, c.1586+6T>C. This is the first clinical description available in literature for this variant. Despite the previous prediction of a mild phenotype in functional study, our patients showed important bone deformities, rickets and impaired growth since infancy followed by severe bone pain, hearing loss and reduced life quality in adulthood. Burosumab therapy improved biochemical and radiological findings in children and ameliorated quality of life in adults. CONCLUSIONS: This case demonstrated c.1586+6T>C causes a severe XLH phenotype, responsive to Burosumab. Familial genetic screening, enlarged to intronic region analysis, when XLH is suspected, allows precocious diagnosis to start timely the appropriate treatment.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Raquitismo Hipofosfatêmico , Humanos , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Íntrons/genética , Qualidade de Vida , Raquitismo Hipofosfatêmico/genética , Mutação , Fenótipo , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética
13.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-982016

RESUMO

OBJECTIVES@#To study the value of serum fibroblast growth factor 23 (FGF23) in the diagnosis of hypophosphatemic rickets in children.@*METHODS@#A total of 28 children who were diagnosed with hypophosphatemic rickets in Children's Hospital of Nanjing Medical University from January 2016 to June 2021 were included as the rickets group. Forty healthy children, matched for sex and age, who attended the Department of Child Healthcare of the hospital were included as the healthy control group. The serum level of FGF23 was compared between the two groups, and the correlations of the serum FGF23 level with clinical characteristics and laboratory test results were analyzed. The value of serum FGF23 in the diagnosis of hypophosphatemic rickets was assessed.@*RESULTS@#The rickets group had a significantly higher serum level of FGF23 than the healthy control group (P<0.05). In the rickets group, the serum FGF23 level was positively correlated with the serum alkaline phosphatase level (rs=0.38, P<0.05) and was negatively correlated with maximum renal tubular phosphorus uptake/glomerular filtration rate (rs=-0.64, P<0.05), while it was not correlated with age, height Z-score, sex, and parathyroid hormone (P>0.05). Serum FGF23 had a sensitivity of 0.821, a specificity of 0.925, an optimal cut-off value of 55.77 pg/mL, and an area under the curve of 0.874 in the diagnosis of hypophosphatemic rickets (P<0.05).@*CONCLUSIONS@#Serum FGF23 is of valuable in the diagnosis of hypophosphatemic rickets in children, which providing a theoretical basis for early diagnosis of this disease in clinical practice.


Assuntos
Criança , Humanos , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico/diagnóstico
14.
Clin Med (Lond) ; 23(4): 420-422, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614660

RESUMO

Abnormalities associated with phosphate metabolism can lead to thoracic deformities that result in respiratory failure, which is conventionally managed by means of supplemental oxygenation, positive airway pressure and physiotherapy. However, when these measures fail, the clinician faces a dilemma, since many patients cannot tolerate a major surgical procedure. A minimally invasive technique, insertion of an endobronchial stent, might offer a solution.


Assuntos
Medicina , Insuficiência Respiratória , Raquitismo Hipofosfatêmico , Humanos , Stents/efeitos adversos , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia
15.
Ital J Pediatr ; 48(1): 193, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482408

RESUMO

BACKGROUND: Hypophosphatemic rickets (HR) is a genetic disease of phosphate wasting that is characterized by defective bone mineralization. The most common cause of the disease is mutations in the phosphate regulating gene with homologies to endopeptidases on the X chromosome (PHEX) gene. The aims of this study were to identify the gene variants responsible for HR in three cases of Malaysian origin from three independent families and to describe their clinical, biochemical, and radiological features. METHODS: Whole exome sequencing (WES) was performed on all patients and their parents, followed by Sanger sequencing validation. Bioinformatics tools were used to provide supporting evidence for pathogenicity of variants. To confirm that a mutation is de novo, paternity test was carried out. High resolution melting curve analysis was performed to assess the allele frequency in normal controls for mutations that were found in the patients. RESULTS: The patients showed typical characteristics of HR including lower limb deformity, hypophosphatemia, and elevated alkaline phosphatase. WES revealed two variants in the PHEX gene and one variant in the dentin matrix protein 1 (DMP1) gene. Two of the three variants were novel, including c.1946_1954del (p.Gly649_Arg651del) in PHEX and c.54 + 1G > A in DMP1. Our data suggests that the novel p.Gly649_Arg651del variant is likely pathogenic for HR disease. CONCLUSIONS: This study extends the variant spectrum of the PHEX and DMP1 genes. Our findings indicate that WES is an advantageous approach for diagnosis of genetic diseases which are heterogeneous.


Assuntos
Proteínas da Matriz Extracelular , Endopeptidase Neutra Reguladora de Fosfato PHEX , Fosfatos , Fosfoproteínas , Raquitismo Hipofosfatêmico , Criança , Humanos , Sequenciamento do Exoma , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Raquitismo Hipofosfatêmico/genética , Proteínas da Matriz Extracelular/genética , Fosfoproteínas/genética , Malásia
16.
Orphanet J Rare Dis ; 17(1): 421, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461014

RESUMO

BACKGROUND: ENPP1 Deficiency-caused by biallelic variants in ENPP1-leads to widespread arterial calcification in early life (Generalized Arterial Calcification of Infancy, GACI) or hypophosphatemic rickets in later life (Autosomal Recessive Hypophosphatemic Rickets type 2, ARHR2). A prior study using the Exome Aggregation Consortium (ExAC)-a database of exomes obtained from approximately 60,000 individuals-estimated the genetic prevalence at approximately 1 in 200,000 pregnancies. METHODS: We estimated the genetic prevalence of ENPP1 Deficiency by evaluating allele frequencies from a population database, assuming Hardy-Weinberg equilibrium. This estimate benefitted from a comprehensive literature review using Mastermind ( https://mastermind.genomenon.com/ ), which uncovered additional variants and supporting evidence, a larger population database with approximately 140,000 individuals, and improved interpretation of variants as per current clinical guidelines. RESULTS: We estimate a genetic prevalence of approximately 1 in 64,000 pregnancies, thus more than tripling the prior estimate. In addition, the carrier frequency of ENPP1 variants was found to be highest in East Asian populations, albeit based on a small sample. CONCLUSION: These results indicate that a significant number of patients with ENPP1 Deficiency remain undiagnosed. Efforts to increase disease awareness as well as expand genetic testing, particularly in non-European populations are warranted, especially now that clinical trials for enzyme replacement therapy, which proved successful in animal models, are underway.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Raquitismo Hipofosfatêmico , Animais , Feminino , Gravidez , Humanos , Prevalência , Povo Asiático , Bases de Dados Factuais
17.
Artigo em Espanhol | LIBOCS | ID: biblio-1434503

RESUMO

El raquitismo hipofosfatémico es un trastorno caracterizado por hipofosfatemia, deficiencia de la absorción intestinal de calcio y raquitismo u osteomalacia que no responde a la vitamina D. Los síntomas son dolor óseo, fracturas y alteraciones del crecimiento. Raquitismo hipofosfatémico es un defecto en la mineralización ósea, originado por alteraciones metabólicas de calcio y fosfatos, siendo características la hiperfosfaturia e hipercalciuria; produce deformidades angulares óseas, la más importante de ellas es el genu varo. Presentamos el caso de paciente masculino, atendido en la Ortopedia Pediátrica Callisperis, diagnosticada con raquitismo hipofosfatémico. Acude al Servicio con un seguimiento de 2017 a 2021, con 13 años de edad, quien presentaba una importante deformidad en genu valgo un caso relativamente infrecuente, la presentación común del Raquitismo hipofosfatemico es el genu varo , así como deformidad progresiva de las extremidades inferiores, con antecedente de tratamiento con grapas de Blaunt sin observarse mejoría; a la exploración física destaca una talla baja, además de angulación en valgo en ambas rodillas 20°, así como hipofosfatemia y fosfaturia. El tratamiento se realizó de forma multidisiplinaria por parte de endocrinología con calcitriol y fosfatos, además de fisiodesis en ambas rodillas a nivel femoral y tibial bilateral mediante placas en ocho previamente retirando las grapas de Blaunt dicho tratamiento fue insatisfactorio, se realizó los controles correspondientes una vez finalizado su crecimiento y con las fisis cerradas se retira implantes.


Hypophosphatemic rickets is a disorder characterized by hypophosphatemia, impaired intestinal calcium absorption, and rickets or osteomalacia that does not respond to vitamin D. Symptoms include bone pain, fractures, and growth disturbances. Hypophosphatemic rickets is a defect in bone mineralization, caused by metabolic alterations of calcium and phosphates, hyperphosphaturia and hypercalciuria being characteristic; produces angular bone deformities, the most important of which is the genu varus. We present the case of a male patient, treated at the Callisperis Pediatric Orthopedics, diagnosed with hypophosphatemic rickets. He attended the Service with a follow-up from 2017 to 2021, with 13 years of age, who presented an important deformity in genu valgus a relatively infrequent case, the common presentation of hypophosphatemic rickets feels the genu varus, as well as progressive deformity of the lower extremities , having previously been treated with Blaunt staples without observing improvement; Physical examination revealed short stature, in addition to 20 ° valgus angulation in both knees, as well as hypophosphatemia and phosphaturia. The treatment was carried out in a multidisciplinary way by endocrinology calcitriol and phosphates, in addition to physiodesis in both knees at the femoral and bilateral tibial level by means of plates in eight previously removing the Blaunt staples, said treatment was unsatisfactory, the corresponding controls were carried out once finished its growth and with closed physis implants are removed.


Assuntos
Masculino , Adolescente , Genu Varum , Raquitismo Hipofosfatêmico
18.
Front Endocrinol (Lausanne) ; 13: 1005189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246908

RESUMO

Since phosphorus is a component of hydroxyapatite, its prolonged deprivation affects bone mineralization. Fibroblast growth factor 23 (FGF23) is essential for maintaining phosphate homeostasis and is mainly produced by osteocytes. FGF23 increases the excretion of inorganic phosphate (Pi) and decreases the production of 1,25-dihydroxyvitamin D in the kidneys. Osteocytes are cells of osteoblastic lineage that have undergone terminal differentiation and become embedded in mineralized bone matrix. Osteocytes express FGF23 and other multiple genes responsible for hereditary hypophosphatemic rickets, which include phosphate-regulating gene homologous to endopeptidase on X chromosome (PHEX), dentin matrix protein 1 (DMP1), and family with sequence similarity 20, member C (FAM20C). Since inactivating mutations in PHEX, DMP1, and FAM20C boost the production of FGF23, these molecules might be considered as local negative regulators of FGF23. Mouse studies have suggested that enhanced FGF receptor (FGFR) signaling is involved in the overproduction of FGF23 in PHEX-deficient X-linked hypophosphatemic rickets (XLH) and DMP1-deficient autosomal recessive hypophosphatemic rickets type 1. Since FGFR is involved in the transduction of signals evoked by extracellular Pi, Pi sensing in osteocytes may be abnormal in these diseases. Serum levels of sclerostin, an inhibitor Wnt/ß-catenin signaling secreted by osteocytes, are increased in XLH patients, and mouse studies have suggested the potential of inhibiting sclerostin as a new therapeutic option for the disease. The elucidation of complex abnormalities in the osteocytes of FGF23-related hypophosphatemic diseases will provide a more detailed understanding of their pathogenesis and more effective treatments.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Raquitismo Hipofosfatêmico , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Endopeptidases/metabolismo , Proteínas da Matriz Extracelular/genética , Raquitismo Hipofosfatêmico Familiar/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Hidroxiapatitas/metabolismo , Camundongos , Osteócitos/metabolismo , Fosfatos , Fósforo/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Raquitismo Hipofosfatêmico/metabolismo , beta Catenina/metabolismo
19.
J Clin Endocrinol Metab ; 108(1): 209-220, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-35981346

RESUMO

Hypophosphatemic rickets typically presents in infancy or early childhood with skeletal deformities and growth plate abnormalities. The most common causes are genetic (such as X-linked hypophosphatemia), and these typically will result in lifelong hypophosphatemia and osteomalacia. Knowledge of phosphate metabolism, including the effects of fibroblast growth factor 23 (FGF23) (an osteocyte produced hormone that downregulates renal phosphate reabsorption and 1,25-dihydroxyvitamin-D (1,25(OH)2D) production), is critical to determining the underlying genetic or acquired causes of hypophosphatemia and to facilitate appropriate treatment. Serum phosphorus should be measured in any child or adult with musculoskeletal complaints suggesting rickets or osteomalacia. Clinical evaluation incudes thorough history, physical examination, laboratory investigations, genetic analysis (especially in the absence of a guiding family history), and imaging to establish etiology and to monitor severity and treatment course. The treatment depends on the underlying cause, but often includes active forms of vitamin D combined with phosphate salts, or anti-FGF23 antibody treatment (burosumab) for X-linked hypophosphatemia. The purpose of this article is to explore the approach to evaluating hypophosphatemic rickets and its treatment options.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Osteomalacia , Raquitismo Hipofosfatêmico , Adulto , Criança , Pré-Escolar , Humanos , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/genética , Osteomalacia/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Raquitismo Hipofosfatêmico/etiologia , Raquitismo Hipofosfatêmico/genética , Fosfatos
20.
Genes Chromosomes Cancer ; 61(12): 740-746, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35999193

RESUMO

Cutaneous skeletal hypophosphatemia syndrome (CSHS) is caused by somatic mosaic NRAS variants and characterized by melanocytic/sebaceous naevi, eye, and brain malformations, and FGF23-mediated hypophosphatemic rickets. The MEK inhibitor Trametinib, acting on the RAS/MAPK pathway, is a candidate for CSHS therapy. A 4-year-old boy with seborrheic nevus, eye choristoma, multiple hamartomas, brain malformation, pleural lymphangioma and chylothorax developed severe hypophosphatemic rickets unresponsive to phosphate supplementation. The c.182A > G;p.(Gln61Arg) somatic NRAS variant found in DNA from nevus biopsy allowed diagnosing CSHS. We administered Trametinib for 15 months investigating the transcriptional effects at different time points by whole blood RNA-seq. Treatment resulted in prompt normalization of phosphatemia and phosphaturia, catch-up growth, chylothorax regression, improvement of bone mineral density, reduction of epidermal nevus and hamartomas. Global RNA sequencing on peripheral blood mononucleate cells showed transcriptional changes under MEK inhibition consisting in a strong sustained downregulation of signatures related to RAS/MAPK, PI3 kinase, WNT and YAP/TAZ pathways, reverting previously defined transcriptomic signatures. CSHS was effectively treated with a MEK inhibitor with almost complete recovery of rickets and partial regression of the phenotype. We identified "core" genes modulated by MEK inhibition potentially serving as surrogate markers of Trametinib action.


Assuntos
Quilotórax , Hamartoma , Hipofosfatemia , Nevo Pigmentado , Nevo , Raquitismo Hipofosfatêmico , Neoplasias Cutâneas , DNA , GTP Fosfo-Hidrolases/genética , Humanos , Hipofosfatemia/diagnóstico , Hipofosfatemia/genética , Proteínas de Membrana/genética , Quinases de Proteína Quinase Ativadas por Mitógeno , Nevo Pigmentado/diagnóstico , Nevo Pigmentado/genética , Nevo Pigmentado/metabolismo , Fosfatos , Fosfatidilinositol 3-Quinases , Raquitismo Hipofosfatêmico/genética , Neoplasias Cutâneas/genética , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...